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Time Response

Chapter Learning Outcomes

After completing this chapter the student will be able to:

• Use poles and zeros of transfer functions to determine the time response of a
control system (Sections 4.1–4.2)

• Describe quantitatively the transient response of first-order systems (Section 4.3)

• Write the general response of second-order systems given the pole location
(Section 4.4)

• Find the damping ratio and natural frequency of a second-order system (Section 4.5)

• Find the settling time, peak time, percent overshoot, and rise time for an
underdamped second-order system (Section 4.6)

• Approximate higher-order systems and systems with zeros as first- or second-
order systems (Sections 4.7–4.8)

• Describe the effects of nonlinearities on the system time response (Section 4.9)

• Find the time response from the state-space representation (Sections 4.10–4.11)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

• Given the antenna azimuth position control system shown on the front
endpapers, you will be able to (1) predict, by inspection, the form of the
open-loop angular velocity response of the load to a step voltage input to
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the power amplifier; (2) describe quantitatively the transient response
of the open-loop system; (3) derive the expression for the open-loop
angular velocity output for a step voltage input; (4) obtain the open-loop
state-space representation; (5) plot the open-loop velocity step response
using a computer simulation.

• Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS)
vehicle’s pitch control system shown on the back endpapers, you will be able to
predict, find, and plot the response of the vehicle dynamics to a step input
command. Further, you will be able to evaluate the effect of system zeros and
higher-order poles on the response. You also will be able to evaluate the roll
response of a ship at sea.

4.1 Introduction
In Chapter 2, we saw how transfer functions can represent linear, time-invariant systems.
In Chapter 3, systems were represented directly in the time domain via the state and output
equations. After the engineer obtains a mathematical representation of a subsystem,
the subsystem is analyzed for its transient and steady-state responses to see if these
characteristics yield the desired behavior. This chapter is devoted to the analysis of system
transient response.

It may appear more logical to continue with Chapter 5, which covers the modeling
of closed-loop systems, rather than to break the modeling sequence with the analysis
presented here in Chapter 4. However, the student should not continue too far into system
representation without knowing the application for the effort expended. Thus, this chapter
demonstrates applications of the system representation by evaluating the transient
response from the system model. Logically, this approach is not far from reality, since
the engineer may indeed want to evaluate the response of a subsystem prior to inserting it
into the closed-loop system.

After describing a valuable analysis and design tool, poles and zeros, we begin
analyzing our models to find the step response of first- and second-order systems. The order
refers to the order of the equivalent differential equation representing the system—the
order of the denominator of the transfer function after cancellation of common factors
in the numerator or the number of simultaneous first-order equations required for the
state-space representation.

4.2 Poles, Zeros, and System Response
The output response of a system is the sum of two responses: the forced response and the
natural response.1 Although many techniques, such as solving a differential equation or
taking the inverse Laplace transform, enable us to evaluate this output response, these
techniques are laborious and time-consuming. Productivity is aided by analysis and design
techniques that yield results in a minimum of time. If the technique is so rapid that we feel
we derive the desired result by inspection, we sometimes use the attribute qualitative to
describe the method. The use of poles and zeros and their relationship to the time response of
a system is such a technique. Learning this relationship gives us a qualitative “handle” on
problems. The concept of poles and zeros, fundamental to the analysis and design of control

1 The forced response is also called the steady-state response or particular solution. The natural response is also
called the homogeneous solution.
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systems, simplifies the evaluation of a system’s response. The reader is encouraged to
master the concepts of poles and zeros and their application to problems throughout this
book. Let us begin with two definitions.

Poles of a Transfer Function
The poles of a transfer function are (1) the values of the Laplace transform variable, s, that
cause the transfer function to become infinite or (2) any roots of the denominator of the
transfer function that are common to roots of the numerator.

Strictly speaking, the poles of a transfer function satisfy part (1) of the definition.
For example, the roots of the characteristic polynomial in the denominator are values of
s that make the transfer function infinite, so they are thus poles. However, if a factor of
the denominator can be canceled by the same factor in the numerator, the root of this
factor no longer causes the transfer function to become infinite. In control systems, we
often refer to the root of the canceled factor in the denominator as a pole even though
the transfer function will not be infinite at this value. Hence, we include part (2) of the
definition.

Zeros of a Transfer Function
The zeros of a transfer function are (1) the values of the Laplace transform variable, s, that
cause the transfer function to become zero, or (2) any roots of the numerator of the transfer
function that are common to roots of the denominator.

Strictly speaking, the zeros of a transfer function satisfy part (1) of this definition. For
example, the roots of the numerator are values of s that make the transfer function zero and
are thus zeros. However, if a factor of the numerator can be canceled by the same factor in
the denominator, the root of this factor no longer causes the transfer function to become
zero. In control systems, we often refer to the root of the canceled factor in the numerator as
a zero even though the transfer function will not be zero at this value. Hence, we include part
(2) of the definition.

Poles and Zeros of a First-Order System: An Example
Given the transfer function G(s) in Figure 4.1(a), a pole exists at s � �5, and a zero exists at
�2. These values are plotted on the complex s-plane in Figure 4.1(b), using an× for the pole
and a ○ for the zero. To show the properties of the poles and zeros, let us find the unit
step response of the system. Multiplying the transfer function of Figure 4.1(a) by a step
function yields

C�s� � �s � 2�
s�s � 5� �

A
s
� B
s � 5

� 2=5
s

� 3=5
s � 5

�4.1�

where

A � �s � 2�
�s � 5�

����
s®0

� 2
5

B � �s � 2�
s

����
s®�5

� 3
5

Thus,

c�t� � 2
5
� 3
5
e�5t �4.2�
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From the development summarized in Figure 4.1(c), we draw the following
conclusions:

1. A pole of the input function generates the form of the forced response (that is, the pole at
the origin generated a step function at the output).

2. A pole of the transfer function generates the form of the natural response (that is, the pole
at �5 generated e�5t).

3. A pole on the real axis generates an exponential response of the form e�αt, where �α is
the pole location on the real axis. Thus, the farther to the left a pole is on the negative real
axis, the faster the exponential transient response will decay to zero (again, the pole at�5
generated e�5t; see Figure 4.2 for the general case).
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FIGURE 4.1 a. System showing input and output; b. pole-zero plot of the system; c. evolution of a
system response. Follow blue arrows to see the evolution of the response component generated by the
pole or zero.

Pole at – α generates
response Ke– αt

s-plane

jω

– α
σ

FIGURE 4.2 Effect of a real-axis pole upon transient response.
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4. The zeros and poles generate the amplitudes for both the forced and natural responses
(this can be seen from the calculation of A and B in Eq. (4.1)).

Let us now look at an example that demonstrates the technique of using poles to obtain
the form of the system response. We will learn to write the form of the response by
inspection. Each pole of the system transfer function that is on the real axis generates an
exponential response that is a component of the natural response. The input pole generates
the forced response.

Example 4.1

Evaluating Response Using PolesEvaluating Response Using Poles

PROBLEM: Given the system of Figure 4.3, write the output, c(t), in
general terms. Specify the forced and natural parts of the solution.

SOLUTION: By inspection, each system pole generates an exponential
as part of the natural response. The input’s pole generates the forced
response. Thus,

C s� � � K1

s

Forced
response

� K2

s � 2
� K3

s � 4
� K4

s � 5

Natural
response

�4.3�

Taking the inverse Laplace transform, we get

c�t� � K1

Forced
response

�K2e�2t � K3e�4t � K4e�5t

Natural
response

�4.4�

(s + 2)(s + 4)(s + 5)

C(s)
1
sR(s) = (s + 3)

FIGURE 4.3 System for Example 4.1

Skill-Assessment Exercise 4.1

PROBLEM: A system has a transfer function, G�s� � 10�s � 4��s � 6�
�s � 1��s � 7��s � 8��s � 10�.

Write, by inspection, the output, c(t), in general terms if the input is a unit step.

ANSWER: c�t� � A � Be�t � Ce�7t � De�8t � Ee�10t

In this section, we learned that poles determine the nature of the time response:
Poles of the input function determine the form of the forced response, and poles
of the transfer function determine the form of the natural response. Zeros and poles
of the input or transfer function contribute to the amplitudes of the component
parts of the total response. Finally, poles on the real axis generate exponential
responses.

4.2 Poles, Zeros, and System Response 161
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4.3 First-Order Systems
We now discuss first-order systems without zeros to define a performance
specification for such a system. A first-order system without zeros can be
described by the transfer function shown in Figure 4.4(a). If the input is a
unit step, where R�s� � 1=s, the Laplace transform of the step response is
C(s), where

C�s� � R�s�G�s� � a
s�s � a� �4.5�

Taking the inverse transform, the step response is given by

c�t� � cf �t� � cn�t� � 1 � e�at �4.6�

where the input pole at the origin generated the forced response cf �t� � 1, and the system
pole at �a, as shown in Figure 4.4(b), generated the natural response cn�t� � �e�at .
Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter a, the only parameter needed to describe
the transient response. When t � 1=a,

e�at j t�1=a � e�1 � 0:37 �4.7�
or

c�t�j t�1=a � 1 � e�at j t�1=a � 1 � 0:37 � 0:63 �4.8�
We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response performance

specifications.

Time Constant
We call 1/a the time constant of the response. From Eq. (4.7), the time constant can be
described as the time for e�at to decay to 37% of its initial value. Alternately, from Eq. (4.8)
the time constant is the time it takes for the step response to rise to 63% of its final value
(see Figure 4.5).

aR(s)  

(a)
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(b)
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σ

FIGURE 4.4 a. First-order system; b. pole plot

Virtual Experiment 4.1
First-Order

Transfer Function
Put theory into practice and find
a first-order transfer function
representing the Quanser
Rotary Servo. Then validate the
model by simulating it in
LabVIEW. Such a servo motor
is used in mechatronic gadgets
such as cameras.

Virtual experiments are found
on Learning Space.
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FIGURE 4.5 First-order system response to a unit step
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The reciprocal of the time constant has the units (1/seconds), or frequency. Thus, we
can call the parameter a the exponential frequency. Since the derivative of e�at is �a when
t � 0, a is the initial rate of change of the exponential at t � 0. Thus, the time constant can be
considered a transient response specification for a first-order system, since it is related to the
speed at which the system responds to a step input.

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)). Since
the pole of the transfer function is at �a, we can say the pole is located at the reciprocal of
the time constant, and the farther the pole from the imaginary axis, the faster the transient
response.

Let us look at other transient response specifications, such as rise time, Tr, and settling
time, Ts, as shown in Figure 4.5.

Rise Time, Tr
Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final value. Rise
time is found by solving Eq. (4.6) for the difference in time at c�t� � 0:9 and c�t� � 0:1.
Hence,

Tr � 2:31
a

� 0:11
a

� 2:2
a

�4.9�

Settling Time, Ts
Settling time is defined as the time for the response to reach, and stay within, 2% of its
final value.2 Letting c�t� � 0:98 in Eq. (4.6) and solving for time, t, we find the settling
time to be

Ts � 4
a

�4.10�

First-Order Transfer Functions via Testing
Often it is not possible or practical to obtain a system’s transfer function analytically.
Perhaps the system is closed, and the component parts are not easily identifiable. Since the
transfer function is a representation of the system from input to output, the system’s step
response can lead to a representation even though the inner construction is not known. With
a step input, we can measure the time constant and the steady-state value, from which the
transfer function can be calculated.

Consider a simple first-order system, G�s� � K=�s � a�, whose step response is

C�s� � K
s�s � a� �

K=a
s

� K=a
�s � a� �4.11�

If we can identify K and a from laboratory testing, we can obtain the transfer function of the
system.

For example, assume the unit step response given in Figure 4.6. We determine that it
has the first-order characteristics we have seen thus far, such as no overshoot and nonzero
initial slope. From the response, we measure the time constant, that is, the time for the
amplitude to reach 63% of its final value. Since the final value is about 0.72, the time
constant is evaluated where the curve reaches 0:63 � 0:72 � 0:45, or about 0.13 second.
Hence, a � 1=0:13 � 7:7.

2 Strictly speaking, this is the definition of the 2% setting time. Other percentages, for example 5%, also can be used.
We will use settling time throughout the book to mean 2% settling time.

4.3 First-Order Systems 163
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To find K, we realize from Eq. (4.11) that the forced response reaches a steady-state
value of K=a � 0:72. Substituting the value of a, we find K � 5:54. Thus, the transfer
function for the system is G�s� � 5:54=�s � 7:7�. It is interesting to note that the response of
Figure 4.6 was generated using the transfer function G�s� � 5=�s � 7�.

4.4 Second-Order Systems: Introduction
Let us now extend the concepts of poles and zeros and transient response to second-order
systems. Compared to the simplicity of a first-order system, a second-order system exhibits
a wide range of responses that must be analyzed and described. Whereas varying a
first-order system’s parameter simply changes the speed of the response, changes in the
parameters of a second-order system can change the form of the response. For example, a
second-order system can display characteristics much like a first-order system, or, depending
on component values, display damped or pure oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our
discussion in the next section, we take a look at numerical examples of the second-order
system responses shown in Figure 4.7. All examples are derived from Figure 4.7(a), the
general case, which has two finite poles and no zeros. The term in the numerator is simply a
scale or input multiplying factor that can take on any value without affecting the form of the
derived results. By assigning appropriate values to parameters a and b, we can show all
possible second-order transient responses. The unit step response then can be found using
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FIGURE 4.6 Laboratory results of a system step response test

Skill-Assessment Exercise 4.2

PROBLEM: A system has a transfer function, G�s� � 50
s � 50

. Find the time constant, Tc,
settling time, Ts, and rise time, Tr.

ANSWER: Tc � 0:02 s; Ts � 0:08 s; and Tr � 0:044 s:

The complete solution is located at www.wiley.com/college/nise.
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C�s� � R�s�G�s�, where R�s� � 1=s, followed by a partial-fraction expansion and the inverse
Laplace transform. Details are left as an end-of-chapter problem, for which you may want to
review Section 2.2.

We now explain each response and show how we can use the poles to determine the
nature of the response without going through the procedure of a partial-fraction expansion
followed by the inverse Laplace transform.

Overdamped Response, Figure 4.7(b)
For this response,

C�s� � 9
s�s2 � 9s � 9� �

9
s�s � 7:854��s � 1:146� �4.12�

This function has a pole at the origin that comes from the unit step input and two real poles
that come from the system. The input pole at the origin generates the constant forced
response; each of the two system poles on the real axis generates an exponential natural
response whose exponential frequency is equal to the pole location. Hence, the output
initially could have been written as c�t� � K1 � K2e�7:854t � K3e�1:146t. This response,

b
s2 + as + b
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t
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shown in Figure 4.7(b), is called overdamped.3 We see that the poles tell us the form of the
response without the tedious calculation of the inverse Laplace transform.

Underdamped Response, Figure 4.7 (c)
For this response,

C�s� � 9
s�s2 � 2s � 9� �4.13�

This function has a pole at the origin that comes from the unit step input and two complex poles
that come from the system. We now compare the response of the second-order system to the
poles that generated it. First wewill compare the pole location to the time function, and thenwe
will compare the pole location to the plot. FromFigure 4.7(c), the poles that generate the natural
response are at s � �1� j

ffiffiffi
8

p
. Comparing these values to c(t) in the samefigure,we see that the

real part of the polematches the exponential decay frequencyof the sinusoid’s amplitude,while
the imaginary part of the pole matches the frequency of the sinusoidal oscillation.

Let us now compare the pole location to the plot. Figure 4.8
shows a general, damped sinusoidal response for a second-order
system. The transient response consists of an exponentially decaying
amplitudegeneratedbytherealpartof thesystempole timesasinusoidal
waveformgenerated by the imaginary part of the systempole. The time
constant of the exponential decay is equal to the reciprocal of the real
part of the system pole. The value of the imaginary part is the actual
frequency of the sinusoid, as depicted in Figure 4.8. This sinusoidal
frequency is given the name damped frequency of oscillation, ωd.
Finally, the steady-state response (unit step) was generated by the
input pole located at the origin. We call the type of response shown in
Figure 4.8 an underdamped response, one which approaches a steady-
state value via a transient response that is a damped oscillation.

The following example demonstrates how a knowledge of the
relationship between the pole location and the transient response
can lead rapidly to the response form without calculating the inverse
Laplace transform.

c(t)

Exponential decay generated by 
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

t

FIGURE 4.8 Second-order step response components
generated by complex poles

Example 4.2

Form of Underdamped Response Using PolesForm of Underdamped Response Using Poles

PROBLEM: By inspection, write the form of the step response of the system in Figure 4.9.

SOLUTION: First we determine that the form of the forced response is a step.
Next we find the form of the natural response. Factoring the denominator of the
transfer function in Figure 4.9, we find the poles to be s � �5� j13:23. The real
part, �5, is the exponential frequency for the damping. It is also the reciprocal
of the time constant of the decay of the oscillations. The imaginary part, 13.23,

is the radian frequency for the sinusoidal oscillations. Using our previous discussion
and Figure 4.7(c) as a guide, we obtain c�t� � K1 � e�5t �K2 cos 13:23t �K3 sin 13:23t� �
K1 � K4e�5t�cos 13:23t � ϕ�, where ϕ � tan�1K3=K2; K4 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
2 � K2

3

p
, and c(t) is a

constant plus an exponentially damped sinusoid.

200
C(s)

s2 + 10s + 200

1
sR(s) = 

FIGURE 4.9 System for
Example 4.2

3 So named because overdamped refers to a large amount of energy absorption in the system, which inhibits the
transient response from overshooting and oscillating about the steady-state value for a step input. As the energy
absorption is reduced, an overdamped system will become underdamped and exhibit overshoot.
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We will revisit the second-order underdamped response in Sections 4.5 and 4.6,
where we generalize the discussion and derive some results that relate the pole position to
other parameters of the response.

Undamped Response, Figure 4.7(d)
For this response,

C�s� � 9
s�s2 � 9� �4.14�

This function has a pole at the origin that comes from the unit step input and two imaginary
poles that come from the system. The input pole at the origin generates the constant forced
response, and the two system poles on the imaginary axis at � j3 generate a sinusoidal
natural response whose frequency is equal to the location of the imaginary poles. Hence, the
output can be estimated as c�t� � K1 � K4 cos�3t � ϕ�. This type of response, shown in
Figure 4.7(d), is called undamped. Note that the absence of a real part in the pole pair
corresponds to an exponential that does not decay. Mathematically, the exponential is
e�0t � 1.

Critically Damped Response, Figure 4.7 (e)
For this response,

C�s� � 9
s�s2 � 6s � 9� �

9

s�s � 3�2 �4.15�

This function has a pole at the origin that comes from the unit step input and two multiple
real poles that come from the system. The input pole at the origin generates the constant
forced response, and the two poles on the real axis at �3 generate a natural response
consisting of an exponential and an exponential multiplied by time, where the exponential
frequency is equal to the location of the real poles. Hence, the output can be estimated as
c�t� � K1 � K2e�3t � K3te�3t. This type of response, shown in Figure 4.7(e), is called
critically damped. Critically damped responses are the fastest possible without the over-
shoot that is characteristic of the underdamped response.

We now summarize our observations. In this section we defined the following natural
responses and found their characteristics:

1. Overdamped responses

Poles: Two real at �σ1; �σ2
Natural response: Two exponentials with time constants equal to the reciprocal of the
pole locations, or

c�t� � K1e�σ1t � K2e�σ2t

2. Underdamped responses

Poles: Two complex at �σd � jωd

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equal to the reciprocal of the pole’s real part. The radian frequency of
the sinusoid, the damped frequency of oscillation, is equal to the imaginary part of the
poles, or

c�t� � Ae�σd t cos�ωdt � ϕ�

4.4 Second-Order Systems: Introduction 167
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3. Undamped responses

Poles: Two imaginary at � jω1

Natural response: Undamped sinusoid with radian frequency equal to the imaginary part
of the poles, or

c�t� � A cos�ω1t � ϕ�
4. Critically damped responses

Poles: Two real at �σ1
Natural response: One term is an exponential whose time constant is equal to the
reciprocal of the pole location. Another term is the product of time, t, and an exponential
with time constant equal to the reciprocal of the pole location, or

c�t� � K1e�σ1t � K2te�σ1t

The step responses for the four cases of damping discussed in this section are
superimposed in Figure 4.10. Notice that the critically damped case is the division between
the overdamped cases and the underdamped cases and is the fastest response without
overshoot.
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FIGURE 4.10 Step responses for second-order system damping cases

Skill-Assessment Exercise 4.3

PROBLEM: For each of the following transfer functions, write, by inspection, the
general form of the step response:

a. G�s� � 400
s2 � 12s � 400

b. G�s� � 900
s2 � 90s � 900

c. G�s� � 225
s2 � 30s � 225

d. G�s� � 625
s2 � 625
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In the next section, we will formalize and generalize our discussion of second-
order responses and define two specifications used for the analysis and design of
second-order systems. In Section 4.6, we will focus on the underdamped case and
derive some specifications unique to this response that we will use later for analysis and
design.

4.5 The General Second-Order System
Now that we have become familiar with second-order systems and their responses, we
generalize the discussion and establish quantitative specifications defined in such a way that
the response of a second-order system can be described to a designer without the need for
sketching the response. In this section, we define two physically meaningful specifications
for second-order systems. These quantities can be used to describe the characteristics of the
second-order transient response just as time constants describe the first-order system
response. The two quantities are called natural frequency and damping ratio. Let us
formally define them.

Natural Frequency, ωn
The natural frequency of a second-order system is the frequency of oscillation of the system
without damping. For example, the frequency of oscillation of a series RLC circuit with the
resistance shorted would be the natural frequency.

Damping Ratio, ζ
Before we state our next definition, some explanation is in order. We have already seen
that a second-order system’s underdamped step response is characterized by damped
oscillations. Our definition is derived from the need to quantitatively describe this
damped oscillation regardless of the time scale. Thus, a system whose transient
response goes through three cycles in a millisecond before reaching the steady state
would have the same measure as a system that went through three cycles in a
millennium before reaching the steady state. For example, the underdamped curve
in Figure 4.10 has an associated measure that defines its shape. This measure
remains the same even if we change the time base from seconds to microseconds or
to millennia.

A viable definition for this quantity is one that compares the exponential decay
frequency of the envelope to the natural frequency. This ratio is constant regardless of the
time scale of the response. Also, the reciprocal, which is proportional to the ratio of
the natural period to the exponential time constant, remains the same regardless of the
time base.

ANSWERS:

a. c�t� � A � Be�6t cos�19:08t � ϕ�
b. c�t� � A � Be�78:54t � Ce�11:46t

c. c�t� � A � Be�15t � Cte�15t

d. c�t� � A � B cos�25t � ϕ�
The complete solution is located at www.wiley.com/college/nise.
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We define the damping ratio, ζ, to be

ζ � Exponential decay frequency
Natural frequency �rad=second� �

1
2π

Natural period �seconds�
Exponential time constant

Let us now revise our description of the second-order system to reflect the new
definitions. The general second-order system shown in Figure 4.7(a) can be transformed to
show the quantities ζ and ωn. Consider the general system

G�s� � b
s2 � as � b

�4.16�

Without damping, the poles would be on the jω-axis, and the response would be an
undamped sinusoid. For the poles to be purely imaginary, a � 0. Hence,

G�s� � b
s2 � b

�4.17�

By definition, the natural frequency, ωn, is the frequency of oscillation of this system. Since
the poles of this system are on the jω-axis at � j

ffiffiffi
b

p
,

ωn �
ffiffiffi
b

p �4.18�
Hence,

b � ω2
n �4.19�

Now what is the term a in Eq. (4.16)? Assuming an underdamped system, the
complex poles have a real part, σ, equal to �a=2. The magnitude of this value is then the
exponential decay frequency described in Section 4.4. Hence,

ζ � Exponential decay frequency
Natural frequency �rad=second� �

jσ j
ωn

� a=2
ωn

�4.20�

from which

a � 2ζωn �4.21�

Our general second-order transfer function finally looks like this:

G�s� � ω2
n

s2 � 2ζωns � ω2
n

�4.22�

In the following example we find numerical values for ζ and ωn by matching the
transfer function to Eq. (4.22).
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Now that we have defined ζ and ωn, let us relate these quantities to the pole location.
Solving for the poles of the transfer function in Eq. (4.22) yields

s1; 2 � �ζωn �ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 � 1

q
�4.24�

From Eq. (4.24) we see that the various cases of second-order response are a function of ζ;
they are summarized in Figure 4.11.4

Example 4.3

Finding ζ and ωn For a Second-Order SystemFinding ζ and ωn For a Second-Order System

PROBLEM: Given the transfer function of Eq. (4.23), find ζ and ωn.

G�s� � 36
s2 � 4:2s � 36

�4.23�

SOLUTION: Comparing Eq. (4.23) to (4.22), ω2
n � 36, from which ωn � 6. Also,

2ζωn � 4:2. Substituting the value of ωn; ζ � 0:35.

Poles Step response

FIGURE 4.11 Second-order
response as a function of
damping ratio

4 The student should verify Figure 4.11 as an exercise.
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In the following example we find the numerical value of ζ and determine the nature
of the transient response.

This section defined two specifications, or parameters, of second-order systems:
natural frequency,ωn, and damping ratio, ζ. We saw that the nature of the response obtained
was related to the value of ζ. Variations of damping ratio alone yield the complete range of
overdamped, critically damped, underdamped, and undamped responses.

Skill-Assessment Exercise 4.4

PROBLEM: For each of the transfer functions in Skill-Assessment Exercise 4.3, do the
following: (1) Find the values of ζ and ωn; (2) characterize the nature of the response.

ANSWERS:

a. ζ � 0:3; ωn � 20; system is underdamped

b. ζ � 1:5; ωn � 30; system is overdamped

c. ζ � 1; ωn � 15; system is critically damped

d. ζ � 0; ωn � 25; system is undamped

The complete solution is located at www.wiley.com/college/nise.

Example 4.4

Characterizing Response from theValue of ζCharacterizing Response from theValue of ζ
PROBLEM: For each of the systems shown in Figure 4.12, find the value of ζ and report
the kind of response expected.

SOLUTION: First match the form of these systems to the forms shown in Eqs. (4.16) and
(4.22). Since a � 2ζωn and ωn �

ffiffiffi
b

p
,

ζ � a

2
ffiffiffi
b

p �4.25�

Using the values of a and b from each of the systems of Figure 4.12, we find
ζ � 1:155 for system (a), which is thus overdamped, since ζ > 1; ζ � 1 for system (b),
which is thus critically damped; and ζ � 0:894 for system (c), which is thus underdamped,
since ζ < 1.

12

(a)

16

(b)

20 C(s)

(c)

s2 + 8s + 12

C(s)C(s)

R(s)

R(s)R(s)

s2 + 8s + 16

s2 + 8s + 20

FIGURE 4.12 Systems for Example 4.4
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4.6 Underdamped Second-Order Systems
Now that we have generalized the second-order transfer function in terms of ζ and ωn, let us
analyze the step response of an underdamped second-order system. Not only will this
response be found in terms of ζ and ωn, but more specifications indigenous to the
underdamped case will be defined. The underdamped second-order system, a common
model for physical problems, displays unique behavior that must be itemized; a detailed
description of the underdamped response is necessary for both analysis and design. Our first
objective is to define transient specifications associated with underdamped responses. Next
we relate these specifications to the pole location, drawing an association between pole
location and the form of the underdamped second-order response. Finally, we tie the pole
location to system parameters, thus closing the loop: Desired response generates required
system components.

Let us begin by finding the step response for the general second-order system of
Eq. (4.22). The transform of the response, C(s), is the transform of the input times the
transfer function, or

C�s� � ω2
n

s�s2 � 2ζωns � ω2
n� �

K1

s
� K2s � K3

s2 � 2ζωns � ω2
n

�4.26�

where it is assumed that ζ < 1 (the underdamped case). Expanding by partial fractions,
using the methods described in Section 2.2, Case 3, yields

C�s� � 1
s
�
�s � ζωn� � ζffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

q
�s � ζωn�2 � ω2

n�1 � ζ2� �4.27�

Taking the inverse Laplace transform, which is left as an exercise for the student,
produces

c�t� � 1 � e�ζωnt cosωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p
t � ζffiffiffiffiffiffiffiffiffiffiffiffi

1 � ζ2
p sinωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

q
t

 !

� 1 � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p e�ζωnt cos�ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

q
t � ϕ�

�4.28�

where ϕ � tan�1�ζ= ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p �.
A plot of this response appears in Figure 4.13 for various values of ζ, plotted along a

time axis normalized to the natural frequency. We now see the relationship between the
value of ζ and the type of response obtained: The lower the value of ζ, the more oscillatory
the response. The natural frequency is a time-axis scale factor and does not affect the nature
of the response other than to scale it in time.

We have defined two parameters associated with second-order systems, ζ and ωn.
Other parameters associated with the underdamped response are rise time, peak time,
percent overshoot, and settling time. These specifications are defined as follows (see also
Figure 4.14):

1. Rise time, Tr. The time required for the waveform to go from 0.1 of the final value to 0.9
of the final value.

2. Peak time, TP. The time required to reach the first, or maximum, peak.
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3. Percent overshoot, %OS. The amount that the waveform overshoots the steady-state, or
final, value at the peak time, expressed as a percentage of the steady-state value.

4. Settling time, Ts. The time required for the transient’s damped oscillations to reach and
stay within � 2% of the steady-state value.

Notice that the definitions for settling time and rise time are basically the same as the
definitions for the first-order response. All definitions are also valid for systems of order
higher than 2, although analytical expressions for these parameters cannot be found unless
the response of the higher-order system can be approximated as a second-order system,
which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of the
transient response. This information can help a designer determine if the speed and
the nature of the response do or do not degrade the performance of the system. For
example, the speed of an entire computer system depends on the time it takes for a hard
drive head to reach steady state and read data; passenger comfort depends in part on the
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FIGURE 4.13 Second-order underdamped responses for damping ratio values
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FIGURE 4.14 Second-order underdamped response specifications
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suspension system of a car and the number of oscillations it goes through after hitting
a bump.

We now evaluate Tp, %OS, and Ts as functions of ζ and ωn. Later in this chapter we
relate these specifications to the location of the system poles. A precise analytical expression
for rise time cannot be obtained; thus, we present a plot and a table showing the relationship
between ζ and rise time.

Evaluation of Tp
Tp is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing after t � 0.
This task is simplified by “differentiating” in the frequency domain by using Item 7 of
Table 2.2. Assuming zero initial conditions and using Eq. (4.26), we get

ℒ� _c�t�� � sC�s� � ω2
n

s2 � 2ζωns � ω2
n

�4.29�
Completing squares in the denominator, we have

ℒ� _c�t�� � ω2
n

�s � ζωn�2 � ω2
n�1 � ζ2� �

ωnffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

q
�s � ζωn�2 � ω2

n�1 � ζ2� �4.30�
Therefore,

_c�t� � ωnffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p e�ζωntsinωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

q
t �4.31�

Setting the derivative equal to zero yields

ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

q
t � nπ �4.32�

or

t � nπ

ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p �4.33�

Each value of n yields the time for local maxima or minima. Letting n � 0 yields t � 0, the
first point on the curve in Figure 4.14 that has zero slope. The first peak, which occurs at the
peak time, Tp, is found by letting n � 1 in Eq. (4.33):

Tp � π

ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p �4.34�

Evaluation of %OS
From Figure 4.14 the percent overshoot, %OS, is given by

%OS � cmax � cfinal

cfinal
� 100 �4.35�

The term cmax is found by evaluating c(t) at the peak time, c(Tp). Using Eq. (4.34) for Tp and
substituting into Eq. (4.28) yields

cmax � c �Tp� � 1 � e��ζπ=
ffiffiffiffiffiffiffiffi
1�ζ2

p � cos π � ζffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p sin π

 !

� 1 � e��ζπ=
ffiffiffiffiffiffiffiffi
1�ζ2

p �
�4.36�

For the unit step used for Eq. (4.28),
cfinal � 1 �4.37�
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Substituting Eqs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

%OS � e��ζπ=
ffiffiffiffiffiffiffiffi
1�ζ2

p � � 100 �4.38�

Notice that the percent overshoot is a function only of the damping ratio, ζ.
Whereas Eq. (4.38) allows one to find %OS given ζ, the inverse of the equation allows

one to solve for ζ given %OS. The inverse is given by

ζ � �ln �%OS=100�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 � ln2�%OS=100�q �4.39�

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) (or,
equivalently, (4.39)) is plotted in Figure 4.15.

Evaluation of Ts
In order to find the settling time, we must find the time for which c(t) in Eq. (4.28) reaches
and stays within � 2% of the steady-state value, cfinal. Using our definition, the settling time
is the time it takes for the amplitude of the decaying sinusoid in Eq. (4.28) to reach 0.02, or

e�ζωnt 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p � 0:02 �4.40�
This equation is a conservative estimate, since we are assuming that

cos�ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p
t � ϕ� � 1 at the settling time. Solving Eq. (4.40) for t, the settling time is

Ts � �ln�0:02
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p �
ζωn

�4.41�
You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as ζ varies from
0 to 0.9. Let us agree on an approximation for the settling time that will be used for all values
of ζ; let it be

Ts � 4
ζωn

�4.42�

Evaluation of Tr
A precise analytical relationship between rise time and damping ratio, ζ, cannot be found.
However, using a computer and Eq. (4.28), the rise time can be found. We first designate ωnt
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as the normalized time variable and select a value for ζ. Using the computer, we solve for the
values of ωnt that yield c�t� � 0:9 and c�t� � 0:1. Subtracting the two values of ωnt yields
the normalized rise time, ωnTr, for that value of ζ. Continuing in like fashion with other
values of ζ, we obtain the results plotted in Figure 4.16.5 Let us look at an example.
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FIGURE 4.16 Normalized rise time versus damping ratio for a second-order underdamped response

Example 4.5

Finding Tp , %OS, Ts , and Tr from a Transfer FunctionFinding Tp , %OS, Ts , and Tr from a Transfer Function

PROBLEM: Given the transfer function

G�s� � 100
s2 � 15s � 100

�4.43�
find Tp, %OS, Ts, and Tr.

SOLUTION: ωn and ζ are calculated as 10 and 0.75, respectively. Now substitute
ζ and ωn into Eqs. (4.34), (4.38), and (4.42) and find, respectively, that Tp � 0:475
second, %OS � 2:838, and Ts � 0:533 second. Using the table in Figure 4.16, the
normalized rise time is approximately 2.3 seconds. Dividing by ωn yields Tr � 0:23
second. This problem demonstrates that we can find Tp, %OS, Ts, and Tr without the
tedious task of taking an inverse Laplace transform, plotting the output response, and
taking measurements from the plot.

Virtual Experiment 4.2
Second-Order

System Response
Put theory into practice studying
the effect that natural frequency
and damping ratio have on
controlling the speed response
of the Quanser Linear Servo in
LabVIEW. This concept is
applicable to automobile cruise
controls or speed controls of
subways or trucks.

Virtual experiments are found
on Learning Space.

5 Figure 4.16 can be approximated by the following polynomials: ωnTr � 1:76ζ3 � 0:417ζ2 � 1:039ζ � 1 (maximum
error less than 1

2 % for 0 < ζ < 0:9), and ζ � 0:115�ωnTr�3 � 0:883�ωnTr�2 � 2:504�ωnTr� � 1:738 (maximum error
less than 5% for 0:1 < ζ < 0:9). The polynomials were obtained using MATLAB’s polyfit function.
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We now have expressions that relate peak time, percent overshoot,
and settling time to the natural frequency and the damping ratio. Now let
us relate these quantities to the location of the poles that generate these
characteristics.

The pole plot for a general, underdamped second-order system,
previously shown in Figure 4.11, is reproduced and expanded in
Figure 4.17 for focus. We see from the Pythagorean theorem that the
radial distance from the origin to the pole is the natural frequency, ωn, and
the cos θ � ζ.

Now, comparing Eqs. (4.34) and (4.42) with the pole location, we
evaluate peak time and settling time in terms of the pole location. Thus,

Tp � π

ωn

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ζ2

p � π

ωd
�4.44�

Ts � 4
ζωn

� π

σd
�4.45�

where ωd is the imaginary part of the pole and is called the damped frequency of
oscillation, and σd is the magnitude of the real part of the pole and is the exponential
damping frequency.

Equation (4.44) shows that Tp is inversely proportional to the imaginary part of
the pole. Since horizontal lines on the s-plane are lines of constant imaginary value, they
are also lines of constant peak time. Similarly, Eq. (4.45) tells us that settling time is
inversely proportional to the real part of the pole. Since vertical lines on the s-plane are
lines of constant real value, they are also lines of constant settling time. Finally, since
ζ � cos θ, radial lines are lines of constant ζ. Since percent overshoot is only a function
of ζ, radial lines are thus lines of constant percent overshoot, %OS. These concepts
are depicted in Figure 4.18, where lines of constant Tp, Ts, and %OS are labeled on the
s-plane.

At this point, we can understand the significance of Figure 4.18 by examining the
actual step response of comparative systems. Depicted in Figure 4.19(a) are the step
responses as the poles are moved in a vertical direction, keeping the real part the same.
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FIGURE 4.17 Pole plot for an underdamped
second-order system
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FIGURE 4.18 Lines of
constant peak time, Tp, settling
time, Ts, and percent overshoot,
%OS. Note: Ts2 < Ts1 ;
Tp2 < Tp1; %OS1 < %OS2.

178 Chapter 4 Time Response



WEBC04 10/28/2014 16:58:17 Page 179

As the poles move in a vertical direction, the frequency increases, but the envelope remains
the same since the real part of the pole is not changing. The figure shows a constant
exponential envelope, even though the sinusoidal response is changing frequency. Since all
curves fit under the same exponential decay curve, the settling time is virtually the same for
all waveforms. Note that as overshoot increases, the rise time decreases.

Let us move the poles to the right or left. Since the imaginary part is now
constant, movement of the poles yields the responses of Figure 4.19(b). Here the
frequency is constant over the range of variation of the real part. As the poles move to
the left, the response damps out more rapidly, while the frequency remains the same.
Notice that the peak time is the same for all waveforms because the imaginary part
remains the same.

Moving the poles along a constant radial line yields the responses shown in
Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the responses
look exactly alike, except for their speed. The farther the poles are from the origin, the more
rapid the response.

We conclude this section with some examples that demonstrate the relationship
between the pole location and the specifications of the second-order underdamped
response. The first example covers analysis. The second example is a simple design problem
consisting of a physical system whose component values we want to design to meet a transient
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response specification. An animation PowerPoint presentation (PPT) demonstrating
second-order principles is available for instructors at www.wiley.com/college/nise. See
Second-Order Step Response.

Example 4.6

Finding Tp , %OS, and Ts from Pole LocationFinding Tp , %OS, and Ts from Pole Location

PROBLEM: Given the pole plot shown in Figure 4.20, find
ζ; ωn; Tp;%OS, and Ts.

SOLUTION: The damping ratio is given by ζ � cos θ � cos�arctan �7=3�� �
0:394. The natural frequency,ωn, is the radial distance from the origin to the

pole, or ωn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72 � 32

p � 7:616. The peak time is

Tp � π

ωd
� π

7
� 0:449 second �4.46�

The percent overshoot is

%OS � e��ζπ=
ffiffiffiffiffiffiffiffi
1�ζ2

p � � 100 � 26% �4.47�

The approximate settling time is

Ts � 4
σd

� 4
3
� 1:333 seconds �4.48�

Students who are using MATLAB should now run ch4p1 in Appendix B.
You will learn how to generate a second-order polynomial from two
complex poles as well as extract and use the coefficients of the
polynomial to calculate Tp, %OS, and Ts. This exercise uses MATLAB
to solve the problem in Example 4.6.

s-plane

θ

d

j7 = jωd

–j7 = –jωd

jω

3– = –
σ

σ

FIGURE 4.20 Pole plot for Example 4.6

Example 4.7

Transient Response Through Component DesignTransient Response Through Component Design

PROBLEM: Given the system shown in Figure 4.21, find J and D to yield 20%
overshoot and a settling time of 2 seconds for a step input of torque T(t).

J

D

T(t) θ

K = 5 N-m/rad

(t)

FIGURE 4.21 Rotational mechanical system for Example 4.7
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